
 

Chapter 4  

Software Robustness with Regards to 
Dysfunctional Values from Static Analysis 

4.1. Introduction  

This chapter describes how to demonstrate software robustness with regards to 
dysfunctional values. For this we use a static analysis tool based on abstract 
interpretation.  

Our approach is original in at least two ways:  

– it introduces the use of a formal method during the software development 
phase instead of the specification phase. The standard [CEN 01a] recommends the 
use of formal techniques (A.2 point 1 on page 48 and A.4 point 1 on page 50) such 
as B, Z during design and specification phases, and static analysis during software 
verification phase. We propose to implement static analysis during the development 
of the program; 

– it implements static analysis in a delayed way. Static analysis is generally used 
to detect targeted errors: runtime errors, memory errors or numerical errors. We 
propose to use a static analysis tool to verify the consistency between the specified 
functional domains and the source code of software, but also to calculate the value 
domains of unspecified inputs. 

In section 4.2, we position our approach with regards to standards associated 
with critical systems. In section 4.3, we elaborate on the software robustness proof 
method described in section 4.4. Section 4.5 explains how to use static analysis to 
                                   
Chapter written by Christèle FAURE, Jean-Louis BOULANGER and Samy AÏT KACI. 

Comment [RE1]: Please specify 
which standard you are 
referring to here 

Comment [RE2]: Shouldn’t these 
two sections be swapped over 
so that the method is described 
first? This makes more sense 

faure
Cross-Out

faure
Replacement Text
The CENELEC EN 50128 standard

faure
Cross-Out

faure
Replacement Text
non trivial

faure
Comment on Text
done

faure
Comment on Text
correct order.

faure
Cross-Out

faure
Replacement Text
explain the need for



144     Static Analysis of Software 
 

automate one part of our method to calculate the “required control”. In section 4.6, 
we present the application of the robustness verification method to Thales 
Engagement product PING. We give further perspectives on the method in 
section 4.7 and conclude the chapter in section 4.8. 

4.2. Normative context  

In critical systems (transport, air, railway, nuclear power stations), failures can 
put the life of one or more people in danger and therefore lead to the system being 
unsafe. For this class of systems, standards require programs to demonstrate the 
absence of failures. Their design is therefore subject to meeting very strict technical 
frames of reference (standards, trade documents, state of the art). 

Electric/electronic systems have been used to execute functions linked to safety 
in most industrial sectors. The CEI/IEC 61508 standard [IEC 98] presents a generic 
approach to all activities linked to the safety lifecycle of electric/electronic/ 
programmable electronic (E/E/PES) that are used to carry out safety functions. 

In most cases, safety is obtained by the addition of several systems based on 
various technologies (mechanical, hydraulic, pneumatic, electric, electronic and 
programmable electronic). The safety strategy must take into account all elements 
contributing to safety. The CEI/IEC 61508 standard [IEC 98] therefore provides a 
security analysis scheme to be applied to security systems based on other 
technologies (mechanical, hydraulic, etc.) and is specialized to E/E/PES systems.  

Due to the large variety of E/E/PES applications and the very different degrees 
of complexity, the exact nature of safety measures to be implemented is application 
specific; this is why in the CEI/IEC 61508 standard [IEC 98] there is no general rule 
but there are recommendations concerning the methods of analysis to be 
implemented. 

Standards provide scales that enable the allocation of a criticality level to each 
system. In complex systems based on electronic and/or programmed components, 
the CEI/IEC 61508 standard [IEC 98] defines the notion of safety integrity level 
(SIL). SIL enables us to quantify the safety level to be achieved and has five values: 

− 0 (no danger, material destruction);  

− 1 (slight injury);  

− 2 (severe injury);  

− 3 (death of a person); or  

− 4 (death of several people). 

faure
Cross-Out

faure
Replacement Text
: the computation of

faure
Cross-Out

faure
Replacement Text
railway interlocking product

faure
Cross-Out

faure
Replacement Text
aircraft

faure
Cross-Out

faure
Replacement Text
transportation

faure
Cross-Out

faure
Replacement Text
domains

faure
Cross-Out

faure
Replacement Text
A failure in an unsafe critical system

faure
Cross-Out

faure
Replacement Text

faure
Cross-Out

faure
Replacement Text

faure
Cross-Out

faure
Replacement Text
the full demonstration of

faure
Inserted Text
systems



Software Robustness     145 

Figure 4.1 shows that the railway standard CENELEC EN 5012x is a declination 
of the generic CEI/IEC 61508 standard [IEC 98] that takes into account specificities 
of the railway domain as well as successful experiences (Sacem, TVM, SAET-
Meteor, etc.). 

The railway domain is therefore mainly dominated by three standards derived 
from CEI/IEC 61508 [IEC 98], which cover different aspects of system security:  

– the CENELEC EN 50126 standard [CEN 00] describes methods to be 
implemented during specification and reliability, availability, maintainability and 
safety demonstrations; 

– the CENELEC EN 50128 standard [CEN 01a] describes the actions to be taken 
in order to demonstrate software safety; 

– the CENELEC EN 50129 standard [CEN 03] describes the structure of the 
safety files.  

IEC 61508 
Standard général 

IEC 61511 
Norme sectorielle 

Processus industriel 

IEC 61513 
Norme sectorelle 

Nucléaire 

IEC 62061 
Norme sectorielle 

Machine 

EN 5012x 
Ferroviaire 

ISO26262 
Domaine Automobile 

 

Figure 4.1. The IEC 61508 general standard and declinations1 

Figure 4.2 presents the architectural levels covered by each railway standard: 
system and subsystem. 

Software development depends on a specific criticality level called software SIL 
(SSIL), which varies from level 0 (no danger, no impact) to level 4 (critical, causing 
the death of several people). The SSIL level is reached by mastering the software 
quality through the application of a pre-established and systematic development 
process. This standard proposes a classic lifecycle in V and requires the 

                                   
1 ISO 26262 standard [ISO 09] is not yet available, but the automobile industry is preparing 
for its implementation, as shown in Chapter 9 in [BOU 09]. It is also worth noting that 
standard CEI/IEC 61513 cannot really be linked to standard CEI/IEC 61508 if we consider 
the history of standards in the nuclear domain. 

Comment [iste3]: Please supply 
English translation for fig 
annotation 

Comment [RE4]: Is this standard 
now available? 

Comment [iste5]: Please provide 
English translation for fig 
annotation 

faure
Inserted Text
, CEN 01b, CEN 01c

faure
Cross-Out

faure
Replacement Text
General standard

faure
Cross-Out

faure
Replacement Text
Sector standard
Industrial process

faure
Cross-Out

faure
Replacement Text
Sector standard
Nuclear

faure
Cross-Out

faure
Replacement Text
Sector standard
Machine

faure
Cross-Out

faure
Replacement Text
Railway

faure
Cross-Out

faure
Replacement Text
Automotive

faure
Comment on Text
done

faure
Comment on Text
done



146     Static Analysis of Software 
 

implementation of techniques such as: application of formal methods during 
specification and design, traceability of requirements, unit tests, test coverage, etc. 

 

Figure 4.2. Standards applicable to railway systems 

If a strongly recommended measure or technique (HR defines [CEN 01a] 
page 46) is not applied, this choice must be explained in detail and justified. It is 
necessary to show that, thanks to the global process implemented and/or to the use 
of other techniques, this measure or technique is not necessary.  

We must notice that for railway systems, and particularly for railway software, it 
is mandatory to have an independent evaluation (see CENELEC EN 50128, 
[CEN 01a, Chap. 14]). Software evaluation is carried out by an entity that is 
independent of the development and known as an independent safety assessor (ISA). 
During the independent evaluation of the software, the conformity to the standard is 
verified: each non-conformity is studied and the corresponding justification is either 
validated or rejected by the ISA. 

4.3. Elaboration of the proof of the robustness method  

Let us consider the common context of a SSIL 3-4 application for which certain 
high recommendations (HRs) have not been followed. An objective lies behind each 
recommendation in a standard. We have elaborated a method for reaching the initial 
objectives without applying a chosen subset of HRs. We demonstrate the objectives 
coverage by showing the relevance and completeness of the software robustness 
with regards to dysfunctional values. 

Comment [iste6]: Please provide 
English translation for fig 
annotation 

Comment [RE7]: What does HR 
stand for? 

Comment [RE8]: Does this refer 
to page 46 or CEN 01a? 

faure
Cross-Out

faure
Replacement Text
highly

faure
Cross-Out

faure
Replacement Text
defined in

faure
Cross-Out

faure
Replacement Text
this

faure
Cross-Out

faure
Replacement Text
objective

faure
Comment on Text
Complete rail system 
Complete rail signaling system 
Individual subsystem 
Individual part of the equipment

faure
Comment on Text
high requirement

faure
Inserted Text
at 

faure
Comment on Text
yes



Software Robustness     147 

Table 4.1 lists three common choices that are often made during software 
development but which lead to the violation of a subset of HRs [CEN 01a]. The first 
column presents the development choice, the second contains the recommendation 
not followed because of this choice and the third associates a reference to this 
recommendation. This index is used in the remainder of this chapter. 

Development choice 
High recommendation (HR)  

not followed 
Reference 

The chosen programming 
language is C, which does not 
offer strong typing  

Use of a strong typing programming 
language (Table A.4, point 7, p. 50) 

HR-1 

The software is integrated in 
big-bang mode, i.e. all the 
modules (or large packages) are 
directly integrated with no 
observable intermediate values 

The integration of the software modules 
must be a process of progressive 
regrouping of each of the software 
modules tested beforehand (section 
10.4.17, p. 24) 

HR-2 

Unit tests and integration tests 
do not allow the demonstration 
that the software meeds the 
recommendations given in the 
standard 

The supply of an account of the 
coverage of tests for each module, 
showing that statements of the source 
code are executed at least once (section 
10.4.14-ii, p. 24) 

HR-3 

The execution of the test catalog based 
on an analysis of the values at the limits 
(Table A.13, point 1, p.55) 

HR-4 

Table 4.1. Correspondence between common development choices 
and HR recommendations [CEN 01a] that are not followed 

Not following the HR-1 recommendation may lead to weaknesses in robustness 
since static typing is not carried out. To make up for this absence of automatic 
verification, developers add (dynamic) value control in the source code. To be 
comparable to static typing, this value control must guarantee that all data handled 
remain in their functional domains2 throughout the executions and must be 
systematically integrated into the application source code. This can only be ensured 
by an a posteriori verification of the presence and correctness of control points set in 

                                   
2 The functional domain is a set of values that are specified as acceptable for a variable. In C, 
scalar types are stored in memory spaces that are octet multiples, or even bit fields that enable 
the representation of 2^n values where n is the number of bits. These types are used for all 
variables, whatever their functional domains, and even the enumerated types are in fact 
processed as int. For this reason, the domain of values associated with the type of variables is 
much larger than their functional domain. C language therefore does not allow the automatic 
control of functional domains. 

faure
Cross-Out

faure
Replacement Text

faure
Cross-Out

faure
Replacement Text
commonly

faure
Cross-Out

faure
Replacement Text
domain

faure
Inserted Text
is

faure
Cross-Out

faure
Inserted Text
C language is not strongly typed. 

faure
Cross-Out

faure
Replacement Text
byte



148     Static Analysis of Software 
 

the piece of software. We use static program analysis to carry out part of this 
verification.  

In the left-hand column, Figure 4.3 presents a non controlled source code written 
in C, and in the right-hand column contains the piece of code that integrates the 
value control: the value of the variable state is controlled between its computation 
by compute_state and its use by use_state. The functional domain {FREE, BUSY} of 
the variable state is defined by its enumerated type. In the controlled piece of code, 
if the value of the state belongs to this domain, the execution continues without 
modification. If this is not the case, the execution is modified by the call to the 
ERROR function.  

typedef enum {FREE,BUSY} EVT; 
… 
EVT state;  
state = compute_state(…);  
 
 
…=use_state(state); 

typedef enum {FREE,BUSY} EVT; 
… 
EVT state;  
state = compute_state(…); 
if ((state == FREE) || (state == BUSY)) 
{ 
  …=use_state(state); 
} 
else  
{ 
   ERROR(state); 
} 

Figure 4.3. Example of value control on the state variable 

Violation of the progressive integration of HR-2 and its effects on HR-3 and  
HR-4 can be dynamically covered with unit tests and out-of-bounds integration tests. 
The number of tests required for the combinations of all possible values of a set of 
variables is roughly the product of the cardinals of their functional domains: these 
tests are frequently too numerous to be carried out during the project time allocated. 
We use static analysis to propagate functional domains from the production of 
software inputs to the value control when it is present in the source code and to data 
consumption in general. If a control point verifies a domain that is different from the 
one calculated by propagation, it means that it is possible to produce dysfunctional 
values based on correct inputs or that the control is stricter than expected. If the 
control verifies the domain calculated by propagation, however, it means that for all 
possible executions the data produced belong to the expected domains. This 
therefore completes the limit tests, proves that the execution is inside the control 
present in the piece of code, and that the control is no more restrictive than expected. 

Comment [RE9]: Uncontrolled? 

Comment [RE10]: Is this 
interpretation correct? 

faure
Inserted Text
without value control

faure
Inserted Text
same 

faure
Cross-Out

faure
Replacement Text
could

faure
Inserted Text
But

faure
Cross-Out

faure
Comment on Text
coorected in the text

faure
Comment on Text
corrected in the test



Software Robustness     149 

 
Original Code Functional 

Domains 

Robustness Proof 

M
an

ua
l I

ns
tr

um
en

ta
tio

n 

Runtime errors 
Dead code 

Control violations

Static analysis

  Required control 

Manual Audit

Justifications 
 

Figure 4.4. Robustness verification method 

Finally, we consider the piece of software as being robust with regards to 
dysfunctional values if it implements value control and the correctness (consistency 
with regards to functional domains) of this control is established.  

We have elaborated a specific method by which to verify software robustness 
implemented as the value control. This method, presented in Figure 4.4, uses static 
program analysis but also requires manual processing. It is made up of two main 
stages:  

− a static analysis that calculates the required control from functional domains;  

− a manual audit that shows the compliance of the value control.  

It is worth noting that here static analysis does not mean direct use of a static 
analysis tool, but a combination of manual and automated stages.  

At each stage, this method detects inconsistencies between the original source 
code and the specified functional domains: execution errors are detected during the 
first stage, and non-conformities are identified during the second stage. Table 4.2 
associates the objective to be proven by our verification method, and the errors thus 
detected, to each recommendation: if an error is detected, the corresponding 
objective is not achieved and the recommendation is not covered. The conformity of 
the control is therefore only proven if all the errors detected statically and all the 

Comment [RE11]: Change 
‘JustificationS’ to 
‘Justification(s)’ and ‘runtime’ to 
‘run-time’ 

faure
Inserted Text
add a new line here

faure
Cross-Out

faure
Replacement Text
run-time

faure
Cross-Out

faure
Replacement Text
Justifications

faure
Inserted Text
if 

faure
Cross-Out

faure
Replacement Text
the automatically detected errors

faure
Comment on Text
done



150     Static Analysis of Software 
 

non-conformities that result from the audit are instructed. In other words, that they 
are corrected in the source code or in the specified domains or are justified. The 
errors instruction stage is therefore essential in the method, but is not described in 
this chapter as it depends on the target application. 

Reference Objective to be proven Errors to be 
instructed 

HR-1 
The production of data outside their functional 
domains is detected by a control violation 

Run-time errors  

Control violations  

HR-2 
Modules do not produce erroneous data based on 
the input’s correct values 

Run-time errors  

 

HR-3 
Non-executable statements of the program are 
detected  

Dead code  

HR-4 

The bounds of a module’s inputs are attainable 
and reached by modules that consume them; and 
an input that takes the value outside its functional 
domain is detected as incorrect by the function 
that consumes it 

Run-time errors 

 

Table 4.2. Errors to be instructed 

Furthermore, this method enables us to implement additional recommendations 
from standard [CEN 01a]: 

– LR-5 defensive programming (Table A.3, point 1, p. 49); 

– LR-6 programming by assertion (Table A.3, point 5, p. 49); 

– LR-7 use of static analysis (Table A.5, point 3, p. 51); 

– LR-8 analysis of values at the limits (Table A.19, point 1, p. 58).  

4.4. General description of the method  

This section informally defines the notions of required control necessary to 
ensure the robustness of the software and the effective control, which is effectively 
set in the source code. Software robustness is defined as the consistency between the 
required control and the effective control. This chapter presents the principal aspects 
of their computation on the source code, as well as the verification of robustness.  

faure
Cross-Out

faure
Replacement Text
if

faure
Inserted Text
,

faure
Cross-Out

faure
Replacement Text
input

faure
Cross-Out

faure
Replacement Text
its

faure
Inserted Text
,

faure
Cross-Out

faure
Replacement Text

faure
Inserted Text
with regards to dysfunctional values

faure
Inserted Text

faure
Cross-Out

faure
Replacement Text
required and effective controls

faure
Cross-Out

faure
Replacement Text
item 1

faure
Cross-Out

faure
Replacement Text
item 5

faure
Cross-Out

faure
Replacement Text
item 3

faure
Cross-Out

faure
Replacement Text
item 1



Software Robustness     151 

4.4.1. Required or effective value control  

Briefly, value control [FAU 09] is implanted in the piece of code by control 
points that verify that the value of the variable at the chosen program point belongs 
to its functional domain.  

If the control carried out is successful, then the variable is functionally correct 
and the execution continues. If it is unsuccessful, an error is detected and the 
software carries out a predefined security action.  

The security action is based on the security rules that are applicable to the target 
software and can correspond to different behaviors: putting the software in its final 
state (fallback position in railway); correcting the current state and continuing the 
execution; or restoring the initial state and restarting the execution.  

The action chosen is generally similar for all control points, since it is defined by 
the security rules that can be applied to the target software.  

if (correct_control) 
{  
        /* do nothing */  
} 
else  
{ 
   Signal_Fault(state); 
} 
 

 if (correct_control) 
{ 
  /* do nothing */ 
} 
else  
{ 
   Signal_Fault(state); 
   FALLBACK_POSITION;  
} 

Figure 4.5. Example of control points with different security actions 

Figure 4.5 presents two examples of security actions:  

– in the left-hand column, the execution continues after having signaled the error 
by Signal_Fault;  

– in the right-hand column, the software goes into fallback position after having 
signaled the error Signal_Fault.    

Once the location strategy is known and the input to control is determined, the 
construction of a control point requires knowedge of:  

– its location, which is determined by the constraint “verifying the value before 
use”, which is translated in terms of source code by “before the consumption 
statements”. As the value is only known after its production, the control point must 

faure
Cross-Out

faure
Replacement Text
implemented

faure
Cross-Out

faure
Replacement Text
fails,

faure
Cross-Out

faure
Replacement Text
raised

faure
Cross-Out

faure
Replacement Text
a previous

faure
Cross-Out

faure
Replacement Text
applicable

faure
Inserted Text
the 

faure
Cross-Out

faure
Replacement Text
The addition of a control point to a piece of software requires the knowledge of: 



152     Static Analysis of Software 
 

be located between its production and its consumption. This corresponds to a set of 
possible locations within the program; 

– its functional domain is known if the input is specified. If this is not the case, it 
is calculated by hand from the specified functional domains and the piece of code 
that is executed.  

Required control is the control necessary to ensure the robustness of the 
software. As its location is chosen as a point between production and consumption, 
the required control point is described by the quadruplet (input, value domain, 
production locations, consumption locations) where input is the name of the variable 
or a memory access path, value domain is a description of the correct values for the 
input between each production and the corresponding consumptions where a 
location is described by a triplet (file name, line number, column number). It is 
worth noting that the production and consumption locations are potentially situated 
in different functions and files. 

 
 
 
 
 

1:  
2:  
3: 
4: 
5: 
6: 

typedef enum {FREE,BUSY,UNK} EVT; 
… 
EVT state;  
 
 state = compute_state(…); 
 if (condition) 
     { …=use_state_1(state);…} 
else  
    { …=use_state_2(state);…} 
…=use_state_3 (state);  
 

(state,{FREE,BUSY},{1},{3,5}) 

Figure 4.6. Example of a required control point 

In the right-hand column, Figure 4.6 presents the required control for the original 
code, which is presented in the left-hand column: the input is state, the functional 
values are {FREE BUSY} and the locations are described by the line numbers {1, 2, 
3, 4, 5} to facilitate reading. The required control (state,{FREE,BUSY},{1},{3, 5}) 
means that a control point must be established to protect statements 3 and 5 from an 
error in the value calculated by statement 1. The value control performed before the 
statements {3, 5} ensures that the value passed to statement {6} is always correct, so 
no control point is necessary between lines 5 and 6.  

We define effective control as the control that is effectively present in the source 
code of an application. It is described by the triplet (input, effective value domain, 
effective location). The location of the effective control point is the result of a choice 
from the set of locations between each production and the corresponding 

faure
Inserted Text
 but leads to one location when the location strategy is applied;

faure
Cross-Out

faure
Replacement Text
can be part of the specification.

faure
Inserted Text
We define

faure
Cross-Out

faure
Replacement Text
as

faure
Cross-Out

faure
Replacement Text
and

faure
Cross-Out

faure
Replacement Text
its

faure
Cross-Out

faure
Replacement Text

faure
Cross-Out

faure
Replacement Text

faure
Cross-Out

faure
Replacement Text

faure
Cross-Out

faure
Inserted Text
the 1 should be on the same line as "state = compute_state"

faure
Inserted Text
presented in the right hand column

faure
Cross-Out

faure
Replacement Text
An effective control point

faure
Cross-Out

faure
Replacement Text
this

faure
Cross-Out

faure
Replacement Text
the name of the input variable or its memory access path

faure
Cross-Out

faure
Replacement Text
line

faure
Cross-Out

faure
Replacement Text

faure
Cross-Out

faure
Replacement Text
therefor



Software Robustness     153 

consumptions. This choice is not generally left to the developer, but is directed by a 
location strategy that is globally chosen for a piece of software or a whole project. 
The two extreme location strategies are:  

– the “as early as possible” strategy, which leads to an effective control point 
being set just after the production statement; 

– the “as late as possible” strategy, which leads to several effective control points 
being placed just before the consumption statements.  

Figure 4.7 presents two examples of controlled code according to the two 
extreme strategies:  

– “as early as possible” left-hand column (one control point); and 

– “as late as possible” right-hand column (two control points).  

1: 
  
 
 
2: 
3:  
4: 
5: 
6: 

state = compute_state(…); 
if ((state == FREE) ||  
     (state == BUSY)) 
{ 
if (condition) 
     { …=use_state_1(state) ;…}; 
else  
    { …=use_state_2(state);…}; 
…=use_state_3(state); 
} 
else {ERROR(state) ;};  

1 : 
2 :  
 
 
3 :  
 
 
4 : 
 
 
5 : 
 
6 : 

state = compute_state(…); 
if (condition) 
     { if ((state == FREE) ||  
             (state == BUSY)) 
       { …=use_state_1(state);… } 
       else { ERROR(state) ;}; 
     } 
else  
    { if ((state == FREE) ||  
            (state == BUSY)) 
       { …=use_state_2(state);… } 
       else {ERROR(state);};}; 

…=use_state_3(state);  

 {(state, {FREE,BUSY}, 1)}  {(state, {FREE,BUSY}, 3),  

  (state, {FREE,BUSY}, 5)} 

Figure 4.7. Examples of effective control points 

To verify that a piece of software is robust with regards to dysfunctional values, 
it is therefore necessary to calculate all the required control points, and then verify 
that they are all implanted (presence and correctness) by one or more effective 
control points, depending on the location strategy chosen.  

Even if control must be set during development, the complexity of implantation, 
modifications in the software and its specification can lead to incoherencies in the 

faure
Inserted Text
all 

faure
Cross-Out

faure
Replacement Text
these

faure
Cross-Out

faure
Replacement Text
encoded

faure
Cross-Out

faure
Replacement Text
chosen location strategy. 

faure
Cross-Out

faure
Replacement Text
or

faure
Cross-Out

faure
Replacement Text
the development cycle,

faure
Cross-Out

faure
Replacement Text



154     Static Analysis of Software 
 

control of the software. It is therefore always necessary to verify the correctness of 
effective control a posteriori with regards to the required control.   

Figure 4.8 presents an erroneous implantation of the required control point 
presented in Figure 4.6. The effective control point is erroneous for two reasons:  

– the first consumption (line 3) is protected in too restrictive a way, since not all 
of the correct values of state are accepted; and 

– the second consumption (line 5) is not protected from incorrect values of state.  

1: 
2:  
 
3:  
 
 
4: 
5: 
6: 

state = compute_state(…); 
if (condition) 
     { if (state == FREE)  
       { …=use_state_1(state);… } 
       else { ERROR(state) ;}; 
     } 
else  
    { …=use_state_2(state) ;… }; 

…=use_state_3(state);  

Figure 4.8. Example of an erroneous effective control point 

4.4.2. Computation of the required control 

All the required control points can be manually calculated from the source code 
of the application and the known functional domains, thanks to the three following 
steps: 

− identification of software and function inputs;  

−location of production and consumption; and  

− computation of functional value domains. 

4.4.2.1. Identification of software and function inputs  

 The identification of all the software and function inputs is done by an analysis 
for each function. The inputs of the software are variables associated with the calls 
to IO 5Input/Output) functions (getc, fget, etc.). The inputs of a function are  
parameters, static variables and the outputs are produced by called functions; and 
global variables are consumed directly or indirectly by the function. In some cases, 
inputs are not implanted in the form of variables, but are components of variables 
(structure fields, array components). Generally, an input is a memory zone described 

Comment [RE12]: Is this 
interpretation correct? Doesn’t 
read well 

faure
Inserted Text
the 

faure
Cross-Out

faure
Replacement Text

faure
Inserted Text
a posteriori 

faure
Cross-Out

faure
Replacement Text
encoding

faure
Inserted Text
a 

faure
Cross-Out

faure
Replacement Text
the correct value BUSY of

faure
Cross-Out

faure
Replacement Text
is rejected and leads to an error

faure
Cross-Out

faure
Replacement Text
specified

faure
Inserted Text
 described below

faure
Cross-Out

faure
Replacement Text
calls to functions that acquire data from the environment such as getc, fget, etc.

faure
Cross-Out

faure
Replacement Text
, variables that contain values produced by the called functions

faure
Cross-Out

faure
Replacement Text
or that are

faure
Inserted Text
More 

faure
Comment on Text
Corrected in the text



Software Robustness     155 

by a path built from the name of a variable and accessors (to array components, to 
structure fields) defined by the language. 

4.4.2.2. Location of production and consumption  

The location of the production and consumption of an input requires a complex 
interprocedural analysis to follow variables (paths) that are renamed via function 
calls. The production of global or local variables is realized by the call to functions 
that access the environment (getc) or any other function of the application. The 
consumption of a value corresponds to an explicit computation based on that value: 
we consider that parameter passing or value storing in another variable are not true 
consumption.  

If the input is a scalar object, the production/consumption is atomic. However, if 
the input is composite, as in a structure or an array, the production/consumption is 
partial and multiple: the production/consumption points must be collected for each 
input component. 

4.4.2.3. Computation of functional value domains 

The functional value domains cannot be calculated based on the source code 
alone. If functional domains are known for all their inputs, no computation is 
necessary. In general, however, functional domains are only known for the software 
inputs as they are part of its specification: the values of these inputs are produced by 
the environment and generally have a restricted value domain.  

The domains of function inputs are often unknown, particularly in the case of 
big-bang integration. They must then be calculated by retroengineering of the source 
code of the program from expert knowledge. In particular, these domains can be 
calculated by propagating the known functional domains through all the statements 
of the software.  

4.4.3. Verification of effective control  

To verify the effective control already present in the target code, it is necessary 
to calculate the required control points, as previously described, then examine the 
piece of software to verify whether each required point is implanted in the source 
code. An effective control point (var, dom, loc) implants a required control point 
(var*, dom*, prod*, conso*) if it applies to the same variable var==var* with the 
same functional domain dom==dom* and its location satisfies the location strategy 
loc∈strategy(prod*, conso*).  

faure
Cross-Out

faure
Replacement Text
calls

faure
Cross-Out

faure
Replacement Text
passing a parameter or storing a value

faure
Cross-Out

faure
Replacement Text

faure
Cross-Out

faure
Replacement Text
The functional domains are known from the specification for the software inputs:  the values are produced by the environment and belong in general to a restricted value domains. 

faure
Inserted Text
On the contrary, 

faure
Cross-Out

faure
Replacement Text
a combination of reverse engineering of 

faure
Cross-Out

faure
Replacement Text
, and

faure
Cross-Out

faure
Replacement Text
specified

faure
Cross-Out

faure
Replacement Text
throughout

faure
Inserted Text
 by mental execution. 

faure
Cross-Out

faure
Replacement Text
a

faure
Cross-Out

faure
Replacement Text
implemented

faure
Cross-Out

faure
Replacement Text
encode

faure
Inserted Text
if 



156     Static Analysis of Software 
 

The general algorithm for the verification of control points is as follows. For 
each required control point (var, dom∗, prod∗, conso∗), we look for effective control 
points that control the value of the variable var:   

– if no effective point exists, then a non-conformity is added: 

(var, dom∗, prod∗, conso∗) ? None 

– for each effective control point (var, dom, loc), we verify that the location loc 
is correct with regards to the location strategy and for locations of production prod 
and consumption conso: 

- if the location is incorrect, then the following non-conformity is added:  

(var, dom∗, prod∗, conso∗) ? (var,  dom, loc) | NC(prod, conso, loc); 

- if the location is correct, then the domains are compared, 

- if dom =/= dom∗, then the following non-conformity is added: 

(var, dom∗, prod∗, conso∗) ? (var, dom, loc) | NC(prod, conso, loc, dom), 

- if dom == dom∗, then the following partial conformity is added: 

(var, dom∗, prod∗, conso∗) ?(var, dom, loc) | PC(prod, conso); 

– then the conformities are analysed to evaluate their coverage: 

- if all the production and consumption points are associated with an effective 
control point, then a total conformity is added:  

(var, dom∗, prod∗, conso∗)?TC, 

- if not, certain production and consumption points are not associated with 
effective points and we add a non-conformity:  

(var, dom∗, prod∗, conso∗)?PC. 

Once all of the required points have been studied, the results are:   

– the required points that are not  implemented in the source code; and 

– potential non-conformities.    

Finally, these potential non-conformities are instructed and can lead to a 
modification of the source code or specified functional domains, or to a justification.  

faure
Comment on Text
these two items  should be right moved and itemized differently a) and b) for example

faure
Inserted Text
the 

faure
Cross-Out

faure
Replacement Text
correction



Software Robustness     157 

4.5. Computation of the control required 

The control required for software is long and difficult to compute as it demands 
interprocedural analyses on complex data, such as value domains. The tools based 
on static analysis (by abstract interpretation) automatically carry out such analyses, 
but do not directly verify control points, calculate the required control points or 
collect the effective control points. We have developed a method to calculate the 
required control that uses the abilities of static analysis tools as they are.  

Static analysis tools simulate all executions of the target application in a 
symbolic execution and verify dynamic properties. This symbolic execution requires 
the abstraction of concrete values into abstract values (lattice elements), and the 
computation of fixed points to cover the recursion often present in programs (loop, 
recursive function). These tools compute abstract values of each variable at each 
program point. The abstract value of a variable, v, represents all the values v can 
take during all possible executions of the program. From these abstract values, tools 
verify properties such as the absence of run time, numerical or memory errors. 

Our method requires the following functionalities from the static analysis tool:  

– detection of run-time errors;  

– computation of a subset of dead code;  

– observe_value operator enabling the extraction of the value of a variable; 

– assume_value operator whose semantic is assert and then assume  
(see section 4.5.2); 

– computation of the software call graph; 

– computation of the data dictionary.  

Our algorithm for computing required control points from the source code and 
functional domains operates in two main stages, as presented in Figure 4.9:  

− stage 1 identifies inputs and localizes their production and consumption points; 
and  

− stage 2 calculates the value domains at the production points.  

These two stages apply static analysis to meet different objectives.  

faure
Cross-Out

faure
Replacement Text
functionnalities

faure
Inserted Text
the

faure
Inserted Text
it 

faure
Inserted Text
it 

faure
Cross-Out



158     Static Analysis of Software 
 

 

 

 

 

 

 

 

 

 

 

 

 

Original code 
Functional domains  

Value domains 

Static analysis (1)

Call graph 
Data dictionary 

Production/consumption  
identification 

Inputs/production/ 
consumption

Code instrumentation 

Instrumented 

Static analysis (2) 

E
xe

cu
tio

n 
er

ro
rs

 
In

st
ru

ct
io

n 
er

ro
rs

 

Stage 1 

Stage 2 

 

Figure 4.9. Computation of the required control 

During the first stage, which is explained in section 4.5.1, the static analysis tool 
is used to calculate the call graph and data dictionary of the original code. During 
this computation, the tool also verifies the absence of compilation and run-time 
errors. These errors must be instructed before being the other results can be used. 

Comment [RE13]: Figure needs 
to be altered via paste special 

faure
Cross-Out



Software Robustness     159 

This is represented in Figure 4.9 by an arrow going from the run-time errors to the 
original code. Once the errors have been corrected, the static analysis tool produces 
the data dictionary and the call graph of the application.  

During the second stage, explained in section 4.5.2, static analysis is used to 
compute unknown functional domains and thus complete the definition of the 
required control points. The errors detected during this stage must also be instructed 
before using these domains.  

4.5.1. Identification of production/consumption of inputs 

Stage 1 begins with the static analysis of the original code, which aims to 
calculate the call graph and data dictionary for global and static variables. This 
information is used to calculate inputs, locations of production and consumption as 
described below:  

– Software inputs: the calls of the input/output functions of the language (getc, 
scanf, fscanf, etc.) are found in the call graph. These call locations are also the 
location of the production of input values for the software. By examining the source 
code at these locations, the assigned variables (software input variables) are 
determined. We thus obtain the software inputs and their production places. Then, 
the consumption locations are found throughout the chains of function calls. 

– Function global or static inputs/outputs: the data dictionary contains the list of 
the application’s global or static variables. If it also contains their production and 
consumption places − either direct or indirect − there is nothing left to calculate. If 
not, it is necessary to find direct uses in the source code and then follow the call 
graph to find all the indirect access points. 

– Function parameters: if the data dictionary contains function parameters, and 
their direct or indirect input or output, there is nothing to calculate. If not, the list of 
the parameters of a function is obtained by looking at their definition. To calculate 
the inputs/outputs, it is necessary to determine all the places the parameters can be 
accessed. We consider that the production place of a parameter is situated before the 
execution of the first statement of the function. The consumption places are 
calculated by following their value throughout calls to function (and therefore 
potential renaming). This computation is done entirely by hand if the static analysis 
tool does not give information regarding the function parameters. 

If a new kind of input is dealt with, it is necessary to define how to calculate 
inputs of this kind and their production/consumption. The rest of the method is 
applied without change.    

faure
Cross-Out

faure
Replacement Text
resulting

faure
Inserted Text
software and function

faure
Cross-Out

faure
Replacement Text

faure
Cross-Out

faure
Inserted Text
function 

faure
Cross-Out

faure
Inserted Text
subset of 

faure
Cross-Out

faure
Replacement Text
parameters

faure
Cross-Out

faure
Replacement Text
ir accesses

faure
Cross-Out

faure
Replacement Text
identify in the piece of software their occurrences



160     Static Analysis of Software 
 

4.5.2. Computation of value domains  

Stage 2 of the method described in Figure 4.9 aims to calculate the value 
domains that are compatible with the domains specified for the software inputs. It 
also verifies the consistency between the specified functional input domains and the 
source code of the target application.  

It begins by a manual phase to instrument the source code, followed by a static 
analysis of the instrumented program, which calculates the unspecified functional 
domains. The instrumentation phase places constraints on the inputs that have a 
specified domain, and observation points for those that do not. The specified 
domains are translated into constraints by using the assume_value operator so that 
any violation of the constraint leads to halting of the execution (a common semantic 
of the assert operator), otherwise the execution continues by taking the constraint as 
an hypothesis (assume semantic). These constraints are placed as early as possible 
after the production of value. The observation points are translated thanks to the 
observe_value operator placed in the source code at production locations, i.e. at the 
beginning of procedures for parameters and global (static) variables. The location 
strategy “as early as possible”, used for setting constraints and observation points, 
minimizes the instrumentation volume and only requires knowledge of the 
production places.  

In the second column in Figure 4.10 we can see an example of source code and 
in the third column its instrumented version. The observation of the variable in  
is posed before statement 1 and the constraint on the variable line is set after 
statement 1.  

 
1:  
 
 
2:  
3:  
4: 
5: 
6: 
7: 

 
 gets(line); 
 
… 
state = compute_state(line,in); 
if (condition) 
     {x=use_state_1(state);…} 
else  
    { x=use_state_2(state);…}; 
y=use_state_3(state);  

observe_value(in); 
gets(line); 
assume_value(line);  
… 
 state = compute_state(line,in); 
 if (condition) 
     { x=use_state_1(state); …} 
else  
    { x=use_state_2(state) ; …}; 
y=use_state_3(state);  

Figure 4.10. Computation of the required control point 

Static analysis of the instrumented code propagates specified value domains for 
the inputs towards observation points. The result of the analysis contains the list of 
domains calculated for unspecified inputs. The calculated domains approximate all 

Comment [RE14]: Obtained? 

faure
Cross-Out

faure
Replacement Text
of the intermediate inputs from the specified functional input domains. 

faure
Cross-Out

faure
Replacement Text
Doing so, it 

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
This stade

faure
Inserted Text
the input

faure
Comment on Text
I do not understand this comment



Software Robustness     161 

of the values attained from specified domains by symbolically executing the source 
code and by collecting the constraints linked to the correct executing of this piece of 
code (division by zero, for instance). This approximation is due to the abstraction 
used by static analysis to take into account all possible executions (sound). For 
example, if the domain [3..4] ∪ [5..7] is calculated, it is over approximated in [3..7] 
by using the interval lattice. 

Furthermore, static analysis automatically verifies the consistency between the 
domains of the software inputs and the instrumented code. Run-time errors, dead 
code or violations of the control signal incoherencies between the source code and 
instrumented constraints. These errors are instructed to be corrected or justified. If 
they need to be corrected, the correctness can require the modification of the source 
code or the specified functional domains. It is sometimes difficult to return to the 
error found at the violated constraint if the influence of the latter is not immediate. It 
is only once all these errors have been instructed, as shown in Figure 4.9, that the 
calculated functional domains are correct and therefore exploitable.  

4.6. Verification of the effective control of an industrial application 

The computation method for the required control described in section 4.5 has 
been applied to verify the value control of a real application, the development of 
which did not follow recommendations HR-1, 2, 3 and 4, but implants the value 
control as previously defined.  

4.6.1. Target software 

The software for Thales signaling products (PING SSIL3-4) implements a rail 
root-management system. This product contributes to the safety of the root-
management functions of railway signaling posts, to the control and command of 
elements of the track (switches, signals, etc.) and to the control−command 
exchanges with external systems, as Figure 4.11 illustrates. 

This software integrates the control of the values of its inputs. We call function 
inputs parameters, static local variables, global variables consumed directly, but also 
produced (parameters, statics or glabals) by the called functions. The location 
strategy chosen for this kind of input implies that consumption is protected by a 
control point placed in the function that consumes the value “at the latest” before 
consumption. We call the variables (parameter, local or global) assigned by the call 
of an input/output function software inputs. These inputs need to be protected by a 
control point placed in the function, which produces the value “as early as possible” 
after production. 

Comment [RE15]: Obtained? 

Comment [RE16]: Please give 
the relevant section number 
here 

Comment [iste17]: Please 
provide English translation for fig 
annotation 

Comment [RE18]: This doesn’t 
make sense. Please rephrase 
this sentence 

faure
Comment on Text
correct

faure
Cross-Out

faure
Replacement Text
related

faure
Cross-Out

faure
Replacement Text
may be

faure
Cross-Out

faure
Replacement Text
Their correction

faure
Cross-Out

faure
Replacement Text
to find the root cause of the violated constraint

faure
Cross-Out

faure
Replacement Text
when

faure
Cross-Out

faure
Inserted Text
 in section 4.4.

faure
Cross-Out

faure
Replacement Text
railway interlocking

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
Function inputs are parameters, static variables or global variables. In this context we consider that values produced by called functions are also function inputs. 

faure
Cross-Out

faure
Replacement Text
supplementary kind

faure
Cross-Out

faure
Replacement Text
the

faure
Inserted Text
should be

faure
Cross-Out

faure
Replacement Text
On the contrary, software inputs 

faure
Comment on Text
done

faure
Comment on Text
done



162     Static Analysis of Software 
 

 

N3

N0 :
Poste de 

Commande 
(Mistral) 

 
N1 : 
CP 

(Centre Poste) 

 
N1  : 
CPD 

(Centre Poste Distant) 

N1 : 
CPD 

(Centre Poste Distant) 

 
CI 

 

N2 :Centre
d’interface 

 

< 1200 m 

        

CE 

N2 : Centres
d’éclatement 

CE  CE CE CE

Liaison numérique à 128 kbits/s 
Liaison Poste de Commande 
Autres liaisons numériques 
Liaison analogique 

Objets campagne :
Signaux, Aiguilles,  
Compteurs d’essieux,
… 

Réseau ERTMS

Réseau  PCC

 
CI 

 

 
CI 

 
CI 

 
CI 

 
CI 

 

Réseau Télésurveillance

Périmètre d’un poste 

 

Figure 4.11. Architecture of the Thales engagement product 

The general form of the value control is given in Figure 4.12. The call to the 
Fatal_fault function logs the errors detected by the value control: the logged 
message is constructed from the name of the module and the fault_message linked to 
the control point that has been violated. The call to FALLBACK_POSITION commands 
the restrictive behavior of the system.  

Comment [iste19]: Please 
provide English translation for fig 
annotation 

faure
Cross-Out

faure
Replacement Text
dependent on

faure
Cross-Out

faure
Replacement Text
interlocking

faure
Cross-Out

faure
Replacement Text
Equipment's perimeter

faure
Cross-Out

faure
Replacement Text
Control and Command center 

faure
Cross-Out

faure
Replacement Text
Numerical connexion

faure
Cross-Out

faure
Replacement Text
CCC connexion

faure
Cross-Out

faure
Replacement Text
Other numerical connexion

faure
Cross-Out

faure
Replacement Text
Analog connexion

faure
Cross-Out

faure
Replacement Text
Tele-surveillance network

faure
Cross-Out

faure
Replacement Text
CCC network

faure
Cross-Out

faure
Replacement Text
ERTMS network

faure
Cross-Out

faure
Replacement Text
Distant center equipment

faure
Cross-Out

faure
Replacement Text
Distant center equipment

faure
Cross-Out

faure
Replacement Text
Center equipment

faure
Cross-Out

faure
Replacement Text
interface equipment

faure
Cross-Out

faure
Replacement Text
bursting equipment

faure
Cross-Out

faure
Replacement Text
Campaign objects: Signals, Switches, axle counter




Software Robustness     163 

if (Nbr_variables_safety >= MAX_VARIABLES_SAFETY) 
   { 
      Fatal_fault (module,  fault_message); 
      FALLBACK_POSITION 
   } 
   /* else Nominal processing */ 

Figure 4.12. Example of a control point present in Thales engagement product software 

We can note that the Fatal_fault function is not limited to the control of values 
but is used to process cases of error in general. Furthermore, the macro ASSERTION 
that defines a control point is not only used to pose the effective control points. The 
presence of all these patterns leads to a lack of uniformity in the source code 
produced. Therefore the search for effective control points, which in theory could be 
done automatically by searching for patterns in the source code (pattern matching), 
must be carried out manually. 

The functional domains are specified in a table that associates the full variable 
name or memory access path (together with the module and function names) and the 
value domain. In our case, domains are only given for what is called software inputs 
above and is described as set of values {FREE, BUSY}, intervals [3..12], or value 
properties non_null(p), sizeof(s)==4. 

4.6.2. Implementation  

We have chosen Polyspace®3 as the static analysis tool because it is the tool used 
by the industrialist who developed the source code and because it offers all the 
functionalities we are searching for.  

Polyspace® is a static analysis tool based on abstract interpretation, the aim of 
which is to detect run-time errors as well as non-deterministic behaviors in the 
source code of an application written in C, C++ or ADA. A run-time error is a 
program error state that is perfectly identified in the standard of the target language 
as leading to an unspecified, undefined or implementation-defined behavior. The 
tool calculates the target program points that could cause one of these behaviors and 
gives them an error status: impossible (green), potential (orange), certain (red) or 
unattainable (grey) code. Polyspace® produces the association list of these program 
points and their error status. Furthermore, it calculates a subset of dead code: the 
statements never executed and the procedures never called.  

                                   
3 ©MathWorks, see Chapter 3 of this book. 

Comment [RE20]: Revise 
chapter number 

faure
Cross-Out

faure
Replacement Text
interlocking

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
Unfortunately, the use of the 

faure
Cross-Out

faure
Replacement Text
error cases

faure
Inserted Text
different 

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
theoretically

faure
Cross-Out

faure
Replacement Text
applying pattern-matching

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
looking

faure
Cross-Out

faure
Inserted Text
s

faure
Cross-Out

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
a construction leading to an 

faure
Inserted Text
each of them 

faure
Cross-Out

faure
Replacement Text
some

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
The MathWorks



164     Static Analysis of Software 
 

Polyspace® offers the two operators that are essential to the method: 

– Observation points (observe_value): this is implemented into an inspection 
point (IPT) on the variables at the chosen points. The command #pragma 
Inspection_Point var1 var2 asks the tool to produce the possible values (abstract 
values) of variables var1 var2 at the point in the program where it is set. The 
calculated value domains are added to the analysis results. It is worth noting that the 
inspection points can set only be on scalar-type variables, which restricts the 
possibilities of observation: in particular, the structures and arrays cannot be 
globally observed but can be observed component by component. 

– Constraints (assume_value): each constraint is translated into assertions. The 
semantic of the statement assert(test) for Polyspace® is: if the test is verified at the 
point where it is set, the rest of the execution is restrained to the values for which the 
test is true, otherwise it stops the execution. The status of the assertions (definitely 
violated, never violated or potentially violated) is also present in the results but does 
not directly prove the control: in particular, the fact that the assertion is never 
violated (green) proves that the control domain is included in the domain calculated 
by Polyspace® but does not show that the two domains are equal. The manual audit 
described in section 4.4.3 therefore remains essential for the verification objective to 
be met.  

Polyspace® makes the intermediate results necessary to the application of our 
method available to the user: 

– unexecuted functions (dead code); 

– functions call graph; and 

– data dictionary. 

4.6.2.1. Preliminary analysis of the application 

The first stage of the static analysis of a source code is its “compilation” by the 
tool. To enable the compilation, we have taken into account the specificities of this 
application and configured Polyspace®, as described in Table 4.3.  

Moreover, the Polyspace® compilation is stricter than those carried out by 
common compilers, since it systematically verifies the respect of the C ANSI 
standard. Thus, certain modifications have been brought to the application’s source 
code to correct the aspects that do not conform to ANSI compliances. Once this 
configuration is finished, the analysis of the application by Polyspace® is possible. 

The results show that the interruptions are not simulated. In particular, infinite 
loops were wrongly detected. We have deleted these cycles, which only delay the 
execution of the rest of the statements without changing their behavior. At this stage 
the analysis was correct but too expensive in terms of time.  

Comment [RE21]: Inserted into? 

Comment [RE22]: What does this 
stand for? 

Comment [RE23]: Please 
provide reference details for this 
standard in the bibliography 

faure
Cross-Out

faure
Replacement Text
as

faure
Cross-Out

faure
Replacement Text
Inspection PoinT

faure
Cross-Out

faure
Replacement Text
show

faure
Cross-Out

faure
Replacement Text
only be set

faure
Cross-Out

faure
Replacement Text
should

faure
Inserted Text
a sequence of

faure
Cross-Out

faure
Replacement Text
the execution is stopped.

faure
Cross-Out

faure
Replacement Text
prove

faure
Cross-Out

faure
Inserted Text
therefore

faure
Cross-Out

faure
Replacement Text
to meet

faure
Cross-Out

faure
Inserted Text
s

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
the one

faure
Cross-Out

faure
Inserted Text
C

faure
Inserted Text
At this stage, 

faure
Cross-Out

faure
Replacement Text
Then

faure
Comment on Text
corrected



Software Robustness     165 

Polyspace® options Specificity of the application 

-target i386 
-OS-target no-predefined-OS 
-I APPLICATIONS/WATCOMC_Includes 

Compiler WATCOMC 

-dos 
The delimiter “\” is used instead of “/” in 
the names of files included that are 
processed 

-discard-asm 
The pieces of assembler are not 
processed but are automatically skipped 
and stubbed  

-D INTERRUPT= 
-D __far= 
-D FAR= 

The “interruptions” and “far pointers” 
are not recognized or simulated but are 
skipped  

Table 4.3. List of options necessary for the compilation 

We simplify the source code to enable a more efficient Polyspace® analysis. To 
reduce the number of pointers handled, we redefine functions without functional 
contribution (message logging), by associating a nohup semantic to them. We also 
replace the Fatal_Fault, Fallback_ Position and Pseudo_ Fatal_Fault functions 
with definite stops of the execution. We define the function ALLOCATE_MEMORY 
to the standard malloc functions. By doing this, we divide the number of aliases 
calculated by Polyspace® by a factor of 5.8. Furthermore, we redefine the macro 
ASSERTION, which implants the control points, to the call of the function assert 
recognized by Polyspace®. During this preliminary work, we are able to detect and 
correct three run-time errors in the source code of the application.  

These adaptations are often necessary to make static analysis practicable at the 
source level because not all existing compiler extensions can be imbed in the 
analyzer and because some source code characteristics, such as the number of 
aliases, limit the efficiency of static tools.  

4.6.2.2. Instrumentation and analysis of the instrumented code  

In our method, the instrumentation of the source code has two goals: to add the 
specified constraints and to add the observation points. These two kinds of 
instrumentation are controlled independently thanks to the Active_constraint and 
Active_observation macros that are activated by the compilation options –D Active_ 
constraint and –D Active_ observation. 

Constraints are implemented in the form of C functions, grouping the assertions 
together for the same variable. Figure 4.13 presents the translation of the functional 
domain [0..NB_ TYPE_CARTE-1] of the typeCarte variable according to the 

faure
Cross-Out

faure
Replacement Text
have then simplified

faure
Cross-Out

faure
Replacement Text
computed

faure
Inserted Text
d

faure
Inserted Text
d

faure
Cross-Out

faure
Inserted Text
also 

faure
Inserted Text
d

faure
Inserted Text
d

faure
Inserted Text
d

faure
Cross-Out

faure
Replacement Text
a

faure
Cross-Out

faure
Replacement Text
to

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
function 

faure
Cross-Out

faure
Replacement Text
where

faure
Cross-Out

faure
Replacement Text
Such

faure
Cross-Out

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
modifications



166     Static Analysis of Software 
 

specification in the constraint_ typeCarte function. Certain specified functional 
domains are not translated into constraints because they are too complicated to be 
propagated by Polyspace®. An example of this is  bit fields values (16-bit heavy 
weight [0..4], weak weight [0..255]), IP address structures 
(192.168.[0..255].[0..255]).   

void constraint_typeCarte(E_TYPE_CARTE typeCarte) 
{ 
#define TMP_typeCarte typeCarte 
  assert(TMP_typeCarte >= 0); 
  assert(TMP_typeCarte <= NB_TYPE_CARTE - 1); 
} 

Figure 4.13. Example of a constraint function 

The constraint functions are duplicated in the case where the constraints must be 
set at several points in the program. In general, the constraints are set once between 
production and consumption − just after production for the sake of simplicity.  
However if there is a Cast operation between production and consumption, the 
constraint is set once just after production and a second time before consumption, if 
it can be translated on the new type. This reinforces the effect of the constraints, 
because it enables Polyspace® value propagation otherwise stopped by the casts,  
especially if they concern components of structured objects (array component, 
structure field). Figure 4.14 presents the use of the constraint_typeCarte function in 
the GetIdCarte function.  

1:  
2:  
 
 
 
 
 
 
 
 
 
3 :  
 
5 : 
6 : 

T_idCarte DIP_GetIdCarte(E_TYPE_CARTE typeCarte) 
{ 
 
#ifdef Active_observation 
  OBS_DIP_GetIdCarte(typeCarte) 
#endif /* Active_observation */ 
 
#ifdef Active_contrainte 
  contrainte_typeCarte(typeCarte); 
#endif /* Active_contrainte */ 
 
   DIP_ASSERTION(typeCarte < NB_TYPE_CARTE); 
 
   return gLesIdCarte[typeCarte]; 
} /* FIN DIP_GetIdCarte */ 

Figure 4.14. Instrumentation of the GetIdCarte function 

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
constraints on least significant bit [0..255] or most significant bit [0..4] of bit fields values, or on IP address structure 192.168.[0..255].[0..255]. 

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
Examples of unused specification domains are

faure
Cross-Out

faure
Replacement Text
when

faure
Cross-Out

faure
Replacement Text
casted value. 



Software Robustness     167 

The observation points are implemented as macros that expand in Polyspace® 
Inspection_Point for the software inputs and its functions. It is worth noting that 
Polyspace® only enables us to observe scalar inputs. This limits the possibility of 
observation on structured objects. Figure 4.14 presents the use of the observation 
macro OBS_DIP_GetIdCarte in the GetIdCarte function of the original application. 

The instrumented code is then analyzed by Polyspace® using the maximal 
precision options (-O3 -to pass4) as well as the options required by the analysis of 
the original code presented in Table 4.4. 

Polyspace® options 

-target i386 

-OS-target no-predefined-OS 

-I APPLICATIONS/WATCOMC_Includes 

-dos 

-discard-asm 

-D INTERRUPT= 

-D __far= 

-D FAR= 

-O3 

-to pass4 

Table 4.4. Polyspace® analysis options for the instrumented software   

The analysis of the instrumented code generates run-time errors if the specified 
domain is not consistent with the source code. Three kinds of errors can be 
automatically detected:  functional constraint violations; value control  violations; 
and run-time errors. The violation of a functional constraint appears as red assert in 
the function constraints definition file. For example in Figure 4.13 if the GetIdCarte 
function is called with an erroneous value (typeCarte ≥NB_TYPE_ CARTE or 
negative) the assertions contained in the function constraint_ typeCarte (see 
Figure 4.12) will be violated. The violation of an original code control point also 
appears as a red assert or dead code. In the example in Figure 4.13, if the control 
point in line 3 is poorly defined (typeCarte > NB_TYPE_CARTE) a violation 
appears. Finally, a general run-time error can appear. For example, in Figure 4.13 an 
out-of-bounds access line 5 can be detected if the gLesIdCarte variable size is 
declared to be too small with regards to the control implemented (for example, 
size(gLesIdCarte) < typeCarte).  

The analysis of the errors is simple for constraint errors, but a lot more 
complicated for other types of errors. The correction of the source code with regards 
to these errors is quite hard without functional expertise on the application. Once 
these incoherencies have been corrected in the source code or the specified 
functional domains, the results of the analysis have been used for the audit. The 
domains calculated at the inspection points serve as a reference domain for the 
unknown functional domains.  

faure
Cross-Out

faure
Replacement Text
the observation of 

faure
Cross-Out

faure
Replacement Text
<0

faure
Cross-Out

faure
Replacement Text
IS

faure
Cross-Out

faure
Replacement Text
can be



168     Static Analysis of Software 
 

4.6.2.3. Source code audit   

The aim of the source code audit is to verify that the effective control points 
implement the required points. The general algorithm for verifying the effective 
control points, presented in section 4.4.3, can be simplified by the instantiation of a 
strategy for setting control points (chosen location), as described hereafter.  

In particular, the source code traversal algorithm can be specialized. Each 
executable function, f, is covered according to a traversal algorithm adapted to the 
kind of input that is controlled:  

– for parameters, local statics or globals variables: it is necessary to follow the 
execution backwards from each consumption in f to the beginning of the definition 
of f; 

– for output parameters and global variables of a function g called in function f: 
it is necessary to follow the execution forward from the call to g until reaching the 
end of the definition of function f;  

– for software inputs: it is necessary to follow the execution forward from the 
call of the input function that produces its value until the function that contains the 
consumption of this value is reached. It is complex research due to its inter-
procedural nature.  

However, the conclusion algorithm on compliance is the same:  

– if no effective control point is found, it means that the production is not 
verified and we add it to the list of potential non-compliances; 

– if at least one effective control point is found, the verification is carried out in 
two successive stages;  

- for each effective point we verify that the controlled domain is indeed the one 
calculated by Polyspace®:  

i) if the domains are not equal, then we add it to the list of potential non-
compliances, and 

ii) if the domains are equal, we move on to the next stage, 

- we verify that the protection offered by these control points is ensured for all 
possible executions by the computation of the paths covered in the source code:  

i) if the effective points protect all possible paths, we add them to the list of 
non-compliances;  

ii) if this is not the case, we add them to the list of potential non-compliances. 

faure
Cross-Out

faure
Cross-Out

faure
Inserted Text
 is reached

faure
Cross-Out

faure
Replacement Text
the

faure
Cross-Out

faure
Replacement Text
to



Software Robustness     169 

The non-compliances thus obtained are instructed one-by-one. The errors are 
corrected in the source code or in specified functional domains, and the other errors 
are justified. This process is beyond the scope of this chapter.  

4.6.3. Results  

4.6.3.1. Direct results 

We have applied the method to two successive versions of the Thales 
rngagement product software.  

The Thales root-management product software V45.05 implemented in 92 
Klines of C is made up of 66 files and 717 functions. The functional domains of 95 
inputs were specified, which enabled the development of 95 functions in a file of 
2,397 lines of C code. We have placed the constraints at 196 program points and the 
observation on 1,509 scalar inputs, the functional domains of which are unknown. 
The Polyspace® tool automatically detected one inconsistency between the source 
code and the specified functional domains. Static analysis of the constrained code 
led to eight source code corrections and one correction of the functional domain in 
the specification. 

The manual verification of the control required the examination of 2,644 
effective control points and showed that 71% of points were correct, 18% were non-
conforming and the status of the remaining 11% had to be established by the 
industrialist as it required functional knowledge about the application.  

The Thales root-management product V49.03 software implemented in 122 
Klines of C is made up of 87 files and 1,409 functions. The specified functional 
domains of 358 inputs led to the development of 358 constraint functions 
(containing 1,800 constraints) with 8,099 lines of C code. We placed the constraints 
at 225 program points, and the observation of 4597 scalar inputs, the functional 
domains of which are unknown.  

The Polyspace® tool automatically detected around 20 inconsistencies between 
the source code and the specified functional domains, which led to the correction of 
22 functional domains in the specification. The validation of results is ongoing and 
the manual audit has not yet begun.  

Software verification has therefore not finished, but the increase in the number of 
constraints processed visibly improved the quality of calculated domains. More than 
84% of domains were specific (different from the domain associated wiht the data 
type), whereas for the previous version only 48% of calculated domains were 
precise.  

faure
Inserted Text
the 

faure
Cross-Out

faure
Replacement Text
railway interlocking

faure
Cross-Out

faure
Cross-Out

faure
Inserted Text
constraint

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
software

faure
Cross-Out

faure
Replacement Text
observed the value

faure
Cross-Out

faure
Replacement Text
were

faure
Cross-Out

faure
Replacement Text
is

faure
Cross-Out

faure
Replacement Text
with



170     Static Analysis of Software 
 

This enables us to say that the manual compliance audit of the control points 
present in the source code with regards to the control points required will be more 
rapidly performed. 

4.6.3.2. Indirect results 

The application of this methodology reinforced vertical traceability (see 
Figure 4.16) of the V model development cycle (see Figure 4.15), in particular the 
data refinement from systems and subsystems towards the lowest levels of software 
application.  

! " #$%&' () ' &(
*' &+," &(

- . /0,10#2+" (

! 304,5' 0563' (

7+" 0' . 2+" (
. 3/$,8 ," #,3' (' 5(

) /5#,$$/ ' (

7+) #9' (

: ; /062+" () ' &(
<= (

: ; /062+" () ' &(
<>(

: ; /062+" () ' &(
<?(

: ; . $+,5#2+" (
8 #," 5' " #" 0' (

- . /0,10#2+" (
) ' &(<?(

- . /0,10#2+" (
) ' &(<>(

- . /0,10#2+" (
) ' &(<= (

 

Figure 4.15. V development cycle 

Indeed, manually verifying the consistency of the functional domains handled by 
the software from values provided by systems and subsystems is arduous, complex 
and error prone due to the multiplicity of potential production and data consumption 
and to data cross-dependencies that can invalidate the established domains. 

Comment [iste24]: Please 
provide English translation for fig 
annotation 

faure
Cross-Out

faure
Inserted Text
required



Software Robustness     171 

Exigences du client

Exigences système

Exigences sous système 1 Exigences sous système 2

Exigences équipement 1 Exigences équipement 2

 

Figure 4.16. Vertical traceability 

The horizontal traceability application of our method (see Figure 4.17) also 
statically shows the partial or complete achievement of objectives: 

– HR-1 (statements coverage): the methodology using Polyspace® detects 
unattainable code and classifies it as a non-compliance; 

– HR-2 (progressive integration of software modules): the application of the 
methodology establishes whether or not the bounds of the output domains can be 
effectively produced by the modules; 

– HR-3 (strong typing): the application of the method shows whether or not the 
use of data outside their functional domain is detected by a control violation; and 

Comment [iste25]: Please 
provide English translation for fig 
annotation 

Comment [iste26]: Please 
provide English translation for fig 
annotation 

faure
Cross-Out

faure
Replacement Text
the

faure
Inserted Text
underlying technology



172     Static Analysis of Software 
 

– HR-4 (tests based on a value limit analysis): the application of the 
methodology establishes whether or not the module input bounds are attainable and 
expected by the modules that consume them; and that an input that takes a  
value outside its functional domain is detected as incorrect by the function that 
consumes it. 

Exigences Système

Exigences sous système i

Exigences équipements j

Exigences logicielles Plan de test fonctionnel logiciel 

Plan de test de validation Ej

Plan de test système

Plan de test de validation SSi

 

Figure 4.17. Horizontal traceability 

4.7. Discussion and viewpoints  

This chapter describes the verification of value control present in the source code 
that ensures the robustness of software with regards to dysfunctional values. This 
value control deals with random faults (disturbed environment, hardware failure, 
etc.) but also takes into account systematic failures (bugs in the application). The 
implementation of effective control, and the consistency between control and 
application, are difficult to ensure. This conformance is therefore better ensured 
throughout the development and not solely verified during the verification phase.  

The method that we put forward enables us to semi-automatically perform an a 
posteriori verification of the control. Our method can be extended to implement 
effective control from the “required control”. The method for computing the 
“required control” presented in this chapter is general and can be applied to add 
control. In this case, the original code does not contain a control point and the final 
verification stage is replaced by the addition of the control in the source code: each 

Comment [iste27]: Please 
provide English translation for fig 
annotation 

faure
Cross-Out

faure
Replacement Text
correctly handled

faure
Inserted Text
 manually

faure
Inserted Text
 in software

faure
Inserted Text
systematically

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
to



Software Robustness     173 

required point is implanted in one or more effective points according to the location 
strategy chosen.  

A large portion of manual operations necessary to the computation of required 
control are difficult to carry out on software programs of industrial size and 
complexity without errors. The description in section 4.5 (then applied in 
section 4.6) clearly reveals automation possibilities: function inputs can be 
calculated by an interprocedural analysis known as in-out computation. Similarly, 
software inputs can be automatically detected and the production and consumption 
locations can be computed by using the notion of a def-use chain. Moreover, the 
instrumentation necessary for the computation of the required control can be 
automatically generated from the source code and the functional domains. Finally, 
the required points can be entirely automatically calculated by combining all of 
these methods.  

It is necessary to remark that a large proportion of these computations is carried 
out in an intermediate way as it is useful for verification of the absence of run-time 
errors. This information is, however, not accessible in general. This is true for 
Polyspace®, as well as numerous other static analysis tools that “know” a lot of 
things about the source code they are symbolically executing but do not transmit this 
information to the user. To our knowledge, no static analysis tool would have 
enabled the automation of all the computations that we carried out manually. 

The verification or automatic setting of control points is much harder to 
automate due to the different forms the effective control points can take because of 
the complexity of the implementation of the localization strategy chosen and 
because of the freedom the developer has in chosing the best compromise between 
respect of the location strategy and minimization of the number of control points set. 
To enable automation, it is necessary to define a more restrictive location strategy 
than the one currently used, which “in the function which consumes and at the latest 
between production and consumption”. Once a restrictive rule is specified, 
establishing control points by instrumentation of the original software or verifying 
this by analysis, the software can be entirely automated. In this chapter, we study 
this automation in a static analysis platform offering basic functionalities and 
allowing the development of new modules. 

4.8. Conclusion 

Verification of the robustness of industrial applications, such as the Thales 
engagement product, would have been impossible to carry out by hand. The 
computation of unknown functional domains cannot be done by hand in a precise 

Comment [RE28]: Is this 
interpretation correct? 

faure
Cross-Out

faure
Inserted Text
chosen

faure
Cross-Out

faure
Replacement Text
for

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
as

faure
Cross-Out

faure
Replacement Text
of this informations is produced as intermediate results because they are usefull for the

faure
Cross-Out

faure
Replacement Text
show

faure
Cross-Out

faure
Replacement Text
necessary liberty left to the

faure
Cross-Out

faure
Replacement Text
to define

faure
Cross-Out

faure
Replacement Text
The full

faure
Cross-Out

faure
Replacement Text
should require the definition of a 

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
From a restrictive location rule, 

faure
Cross-Out

faure
Replacement Text
the

faure
Cross-Out

faure
Cross-Out

faure
Replacement Text
or the verification of

faure
Cross-Out

faure
Replacement Text
could

faure
Cross-Out

faure
Replacement Text
We are currently studying

faure
Cross-Out

faure
Replacement Text
interlocking



174     Static Analysis of Software 
 

enough way. We have shown that it is possible to use static analysis of programs to 
make this verification possible.  

Static analysis tools based on abstract interpretation are generally used to 
demonstrate the absence of run-time, memory or numerical errors and calculate 
abstract values to do so. We have used this functionality to propagate the functional 
domains of the software input data to the internal inputs. This way, the consistency 
between the source code and the inputs’ functional domains is automatically proven: 
if no runtime error or non-executable statement is found, consistency is ensured. 
Furthermore, we have shown that it is possible to specify all the control points 
ensuring software robustness. This enables the definition of a verification method: if 
a required control point is not implemented or is badly implemented in the source 
code of the software, then its robustness is not ensured. 

As expected, these two activities enable the demonstration of the robustness of 
industrial software conforming with the  CENELEC EN 50128 standard [CEN 01a].  
To limit the manual implementation time, we can use the method by automatically 
adding the control and by operating the verification during development. It is then 
possible to carry out verification of the control in an incremental way by conserving 
the successive audit results. One final verification will remain necessary on the 
automatic instrumentation tool, and a differential audit will be needed in relation to 
the prior results.  

One strength of the method put forward is that it can be carried out by people 
without functional knowledge about the application, since the relevant information is 
automatically extracted from its source code. Another strong point of our method is 
the complex use (non press button) of static analysis tools, of which there are few 
examples in the literature. This type of use will be increasingly important in the 
future as it provides greater confidence in the results, since part of the information is 
automatically calculated, and more confidence in the method, since it can itself be 
audited. 

Our method implies the use of a static analysis tool. Any tool or combination of 
static analysis tools that have the functionalities listed in section 4.5 can be used. We 
have used Polyspace® to verify a railway application and plan to carry out the same 
verification with one or more tools, such as Astrée4 or Frama-C5, to compare the 
precision of results.  

                                   
4 www.absint.com/astree/index_fr.htm. 
5 http://frama-c.com/. 

Comment [RE29]: Is this 
interpretation correct? 

Comment [RE30]: Format 
footnote number 

Comment [RE31]: Format 
footnote number

faure
Cross-Out

faure
Replacement Text
to

faure
Cross-Out

faure
Replacement Text
could apply

faure
Cross-Out

faure
Replacement Text
should

faure
Inserted Text
be

faure
Cross-Out

faure
Replacement Text
remains

faure
Cross-Out

faure
Replacement Text
with the previous results is needed. 

faure
Cross-Out

faure
Replacement Text
the

faure
Inserted Text
audit

faure
Cross-Out

faure
Replacement Text
because

faure
Inserted Text
because

faure
Cross-Out

faure
Cross-Out

faure
Inserted Text
can

faure
Cross-Out

faure
Replacement Text
with another tool



Software Robustness     175 

4.9. Bibliography  

[BOU 09] BOULANGER J.-L., Safety of Computer Architectures, ISTE/WILEY, 2009.  

[CEN 00] CENELEC, NF EN 50126, Applications Rails. Spécification et Démonstration de la 
Fiabilité, de la Disponibilité, de la Maintenabilité et de la Safety (FMDS), CENELEC 
January 2000. 

[CEN 01a] CENELEC, NF EN 50128, Applications Rails. Système de Signalisation, de 
Télécommunication et de Traitement – Software pour Système de Commande et de 
Protection Rail, CENELEC, July 2001. 

[CEN 01b] CENELEC, EN 50159-1, Standard Européen. Applications aux Chemins de fer: 
Systèmes de Signalisation, de Télécommunication et de Traitement – Partie 1: 
Communication de Safety sur des Systèmes de Transmission Fermés, CENELEC, March 
2001. 

[CEN 01c] CENELEC, EN 50159-2, Standard Européen. Applications aux Chemins de Fer: 
Systèmes de Signalisation, de Télécommunication et de Traitement – Partie 2: 
Communication de Safety sur des Systèmes de Transmission Ouverts, CENELEC, March 
2001. 

[CEN 03] CENELEC, NF EN 50129, Standard Européen. Applications Rails: Systèmes de 
Signalisation, de Télécommunications et de Traitement Systèmes Électroniques de Safety 
pour la Signalisation, CENELEC, 2003. 

[COU 77] COUSOT P., COUSOT R., “Abstract interpretation: a unified lattice model for static 
analysis of programs by construction or approximation of fixpoints”, in Conference 
Record of the 6thAnnual ACM SIGPLAN-SIGACT Symposium on Principles of 
Programming Languages, Los Angeles,  pp. 238-252, ACM Press, New York, 1977. 

[FAU 09] FAURE C., Computer Aided Extrinsic Robustness Verification. Extended Abstract. 
SAFA Annual Workshop on Formal Techniques, 2009 (available at: www-
spi.lip6.fr/~jaume/CFaureSAFA.pdf). 

[IEC 98] IEC, IEC 61508 – Safety Fonctionnelle des Systèmes Électriques Électroniques 
Programmables Relatifs à la Safety. Standarde Internationale, IEC, 1998. 

[ISO 09] ISO, ISO/CD-26262, Road Vehicles – Functional Safety, ISO, 2009 (unpublished). 

[ISO 90] ISO, Programming Languages – C. International Standard ISO/EIC9899:1990 (E), 
ISO, 1990. 

 

Comment [RE32]: Please 
reference these two standards 
in the text 

Comment [RE33]: Please 
reference these two standards 
in the text or delete them from 
the bibliography 

Comment [RE34]: Are these 
references available in English? 
If so, please replace them with 
the English versions 

Comment [RE35]: Is this 
reference available? If so, 
please replace it 

Comment [RE36]: Has this now 
been published? 

faure
Cross-Out

faure
Replacement Text
Railway applications – Communication, signalling and processing systems – Safety related electronic systems for signalling

faure
Cross-Out

faure
Replacement Text
Railway applications — Communication, signalling and processing systems — Part 1: Safety-related communication in closed transmission systems. 

faure
Cross-Out

faure
Replacement Text
Railway applications — Communication, signalling and processing systems — Part 2: Safety related communication in open transmission systems.

faure
Cross-Out

faure
Replacement Text
Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS).


faure
Cross-Out

faure
Replacement Text
Railway applications - Communication, signalling and processing systems - Software for railway control and protection systems.

faure
Cross-Out

faure
Replacement Text
Functional safety of electrical/ electronic/programmable electronic safety-related systems. 

faure
Cross-Out

faure
Replacement Text
http://www-sop.inria.fr/oasis/SAFA/abstracts09/safa09-Faure.pdf



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /AdobeSansMM
    /AdobeSerifMM
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 350
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 350
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 350
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENG ()
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000410064006f00620065002000500044004600200064006f00630075006d0065006e0074007300200066006f00720020007100750061006c0069007400790020007000720069006e00740069006e00670020006f006e0020006400650073006b0074006f00700020007000720069006e007400650072007300200061006e0064002000700072006f006f0066006500720073002e002000200043007200650061007400650064002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000410064006f00620065002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




